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ABSTRACT
Exploratory data analysis is increasingly more necessary as larger spatial data is managed
in electro-magnetic media. We propose an exploratory method that reveals a robust
clustering hierarchy. Our approach uses the Delaunay diagram to incorporate spatial
proximity. It does not require any prior knowledge about the data set, nor does it require
parameters from the user. Multi-level clusters are successfully discovered by this new
method in only O(nlogn) time, where n is the size of the data set. The efficiency of our
methods allows us to construct and display a new type of tree graph that facilitates
understanding of the complex hierarchy of clusters.  We show that clustering methods that
adopt a raster-like or vector-like representation of proximity are not appropriate for spatial
clustering. We conduct an experimental evaluation with synthetic data sets as well as real
data sets to illustrate the robustness of our method.
Keywords: clustering, data mining, exploratory spatial analysis, Delaunay diagram

1 INTRODUCTION
Data gathering and data collection have long been one of the most expensive procedures in
GIS (Geographic Information Systems). Developments in recent years have made these
procedures more accurate, faster, easier and cheaper. As a result of this, we now face the
challenge to find useful information and knowledge from the huge amount of geo-
referenced data. Clustering is one of the central techniques in spatial analysis and spatial
data mining (Ng and Han, 1994). GIS normally organizes data along many different
themes or layers. Spotting and locating interesting groups in a particular theme is the
starting point of exploratory data analysis and plays a critical role in exploratory
investigations. Recently, a number of different clustering algorithms have been suggested
in data mining (Ng and Han, 1994; Ester et al., 1996; Zhang et al., 1996; Agrawal et al.,
1998; Guha et al., 1998; Wang et al., 1999; Karypis et al., 1999). They differ in their
capabilities, applicability and computational requirements. Clearly no particular clustering
method has been shown to be superior to all its competitors in all aspects. Typically, the
problem is that clusters identified with one method can not be detected by other methods.
Even a set of points declared noise by a certain method might be identified as a cluster by
some other methods. We believe that this is due to two reasons. First, methods aim to be
applicable in very general metric spaces. Second, methods adhere strongly to a clustering
philosophy, based either on a hierarchical approach, a density approach or a nearest
neighbor approach. Here, we concentrate on clustering geo-referenced 2-D point data, the
most fundamental clustering task for exploratory data analysis in GIS. Then, we use the
Delaunay Diagram (the dual of the Voronoi diagram) as our source of analysis. This is a
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structure that is linear in the size of the data set but implicitly contains vast amounts of
proximity information. For example, nearest-neighbors are efficiently computed. Our
method combines hierarchical exploration with graph information and metric/density
information to obtain remarkable robust clustering.

Today’s digital spatial data sets are notoriously huge and complex. Further, their entities
are not independent but spatially correlated and temporally correlated (Bailey and Gatrell,
1995). The unique nature of geo-referenced data impedes partitioning initial set of points
into a number of mutually exclusive groups with similar, more homogeneous
characteristics. GIS and data mining researchers have suggested criteria towards the ideal
clustering approach. However, the main concerns are slightly different. The GIS
community seems more interested in the quality of the clustering than the computational
efficiency. For example, GAM (Openshaw, 1987) results in a robust exploratory tools, but
it tests all circles, within a range of different radii, not to miss any possible clusters. As a
result of this, it is neither realistic nor applicable to a very large data set. Data mining
research seems more interested in enhancing time complexity by reducing either CPU or
I/O costs (Ng and Han, 1994; Ester et al., 1996), efficiency in a limited resources (Zhang et
al., 1996), subspace clustering (Agrawal et al., 1998) or effectiveness in some sense (Guha
et al., 1998; Kang et al., 1997; Karypis et al., 1999; Openshaw, 1994).

Thus a clustering method for large sets of geo-reference data supporting exploratory
analysis should meet requirements from both communities, GIS and data mining. These
requirements are as follows:

 Multi-level, hierarchical, discovering clusters within clusters.
 Exploratory rather than confirmatory
 Incorporate spatial proximity
 Identify and manage local parameters rather than global
 No constraints (Minimize preconditions)
 Clustering with the whole data set rather than samples
 Efficiency (Fast enough) and effectiveness (Quality of clustering)
 Non-parametric (Do not impose models on the data, let the data speak first)

Current clustering methods fail to satisfy this combination of requirements. We present a
clustering method named AMOEBA1, which fulfills all these requirements. We explain in
detail the suitability of AMOEBA for exploratory spatial analysis and spatial data mining.
The remainder of this paper is organized as follows. Section 2 discusses these requirements
in details. We examine the proximity graph compared to the conventional data models in
section 3. In particular, we argue that it best describes spatial proximity. Section 4
discusses the inherent ambiguity of Delaunay triangulation and suggests solutions. Section
5 proposes the algorithm of the new clustering and analyzes its time complexity. In Section
6, we introduce a weighted dendrogram to help users understand the hierarchical structure
while exploring data sets. The performance of AMOEBA is examined in Section 7.
Finally, concluding remarks and future works are given in Section 8.

2 MORE ABOUT REQUIREMENTS
We now review in more detail the requirements outlined in the previous section. One of the
unique characteristics of geo-referenced data is its generic complexity. Clusters may

                                                       
1 The clustering method suggested in this paper is named AMOEBA, since its process is similar to the reproduction of amoeba. The
amoeba reproduces itself by dividing into two equal parts, a process known as binary fission. AMOEBA also reproduces itself by
dividing into two parts in each level, one of which is of interest the other is not.
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contain several numbers of sub-clusters. These sub-clusters may consist of smaller sub-
clusters. This kind of hierarchy can be easily found in real world due to its hierarchical
nature. For instance, a big city is usually surrounded by several numbers of small cities.
Each small city may contain a number of towns in it. Therefore, a robust exploratory
clustering method should be able to report clusters hiding in the data and reveal cluster
hierarchy to help users explore and examine patterns at a different geographical scale.

(a) A point data set (n =  370, points represent Asian shops)       (b) A cluster hierarchy
Figure 1. A point data set and its cluster hierarchy.

Intuitively, we can recognize that there are three large-scale clusters in Figure 1(a): a
circle-shaped cluster, a triangle-shaped cluster and a rectangle-shaped cluster. Each large-
scale cluster is composed of small-scale sub-clusters. For instance, the circle-shaped
cluster consists of three sub-clusters. The diagram in Figure 1(b) reveals this hierarchy.
With the aid of diagram, users not only recognize the total number of clusters, but also
grasp easily the hierarchical structure of the data.

Definitions of what constitutes a cluster or noise vary from method to method. DBSCAN
(Ester et al., 1996) takes a cloud of high density as a cluster while a maximal set of
connected dense units in k-dimensions is a cluster for CLIQUE (Agrawal et al., 1998).
Points merged based on a variety of criteria are clusters in bottom-up hierarchical
clustering (Zhang et al., 1996; Guha et al., 1998; Karypis et al., 1999). A cluster is a group
of objects, which have similar characteristics, more homogeneous among themselves that
with respect to others, closer within themselves. Since clustering is for knowledge
discovery, that is for revealing information and patterns in data, it should not be
confirmatory, but exploratory (Openshaw, 1994). The methods should not impose a unique
definition of neither cluster nor noise. In other words, exploratory approaches should not
confirm whether a set of points is a cluster or not, but rather suggest all possible clusters. It
is implicitly assumed in the clustering methods that clusters are of great importance for
further analysis. Each cluster is of potential interest. Therefore, missing a cluster can cause
incomplete and imprecise analysis. For example, the small-scale clusters in Figure 1(a)
may represent concentrations of Asian shops while the large-scale cluster may represent
suburbs. By missing out large-scale clusters, we are not able to analyze the relationship
between suburbs and Asian shops. Similarly, it is no longer possible to examine the correct
relationship between blocks and Asian shops without small-scale clusters. Naturally,
detecting clusters is the fundamental task in clustering.

An essential characteristic of spatial entities is that they are correlated with each other in
the sense of time, location, theme and attribute. As Tobler’s famous proposition (1970)
states: ’Everything is related to everything else, but near things are more related than



4

distant things’. Thus, proximity is critical to spatial analysis. Consequently, incorporating
proximity is the main feature for successful spatial clustering.

In current methods the user supplies global parameters that influence the bias in the
generalization of the clustering. These parameters are the number of clusters in the case of
CLARANS (Ng and Han, 1994), but in other methods they are a density threshold to
distinguish clusters from noise (Ester et al., 1996; Wang et al., 1999), or a threshold for
controlling the granularity of clusters (Kang et al., 1997). Even in hierarchical clustering,
user-supplied global parameters determine termination or merge conditions (Zhang et al.,
1996; Guha et al., 1998; Karypis et al., 1999). However, these parameters are not easily
determined without prior knowledge, hinders exploration. Unfortunately, slight changes to
the parameter values translate into totally different results (Ankerst et al., 1999) (thus,
raising suspicion on the clusters found because if so many results are possible, what is the
true clustering structure in the data?). These global parameters should be avoided as much
as possible. Moreover, it is unlikely that global parameters would ever be suitable.
Geographical phenomena are the result of global order effects first and local order effect
later (Bailey and Gatrell, 1995). Clusters, therefore, are the result of large scale or global
effects and small scale or local effects. Clusters may share global first order effects, but
have their own local second order effects. Global parameters should be used for a set of
points only when the set of points is under the same circumstance. Thus, the use of global
parameters should be minimized not only to allow for local variation, but for spotting true
clusters.

Openshaw (1994) emphasizes that subjectivity and precondition should be minimized in
exploratory data analysis tasks. This means that constraints should not be imposed on the
data set. His phrase ’Leave the data tell something’ suggests that clusters should be
stemmed from the data, not from the user. DBSCAN and GAM impose a certain radius of
circle to find a high density of point set. Clustering in statistics assumes a certain
mathematical distribution. These methods may produce incorrect or unexpected results
when their assumptions are not met. Thus, assumptions should be minimized if they are
inevitable.

Sampling is always at best not wrong, rather than right. It is used to represent the original
data, typically to reduce CPU-time or computer memory requirements. With care, it may
generate reasonable results. Given that every point is related to everything else, sampling
can not represent everything in the original data. CURE (Guha et al., 1998) and ROCK
(Guha et al., 1999) draw random samples from the database to reduce time complexity.
However, one should notice that to gain confidence in the results, one would have to run
the method several times, perhaps loosing such CPU-time gains. BIRCH (Zhang et al.,
1996) performs a pre-clustering step to extract mathematical summaries that are stored in
memory with a certain data structure called CF-tree. STING (Wang et al., 1997) and
STING+ (Wang et al., 1999) also use a statistical information based on a grid to minimize
the computational complexity. These compact values can be used for clustering to draw a
good approximation. However, every member in the data set is not considered as equally
important by use of either sampling or statistical summaries.

3 PROXIMITY GRAPH
Geographical data is represented by three basic topological concepts- the point, the line,
and the area (Burrough, 1986). Despite of the fact that the point is the most primitive one,
it is not easy to define point proximity as a discrete relation. Conversely, area data is
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simple; two areas sharing a common boundary are neighbors. Similarly, two lines can be
regarded as adjacent if they intersect each other. The spatial analysis of discrete non-
connected objects (points) has been approached using distance concepts in the traditional
vector and raster models2. As a result of this, the conventional data models are not able to
hold a spatial adjacency properly for discrete objects (Gold, 1991).

           (a) raster model                                 (b) vector model                           (c) Voronoi diagram
Figure 2. The raster, vector and Voronoi spatial tessellation (n = 5).

The raster approach has good implicit adjacency relationships, but they are between pieces
of space, not perceived map objects (Gold, 1991). As it can be seen from Figure 2(a), each
point has 4- or 8-connectivity neighbors, which share a common boundary depending on 4-
or 8-connectivity. As a result of this, the points  and  are considered as neighbors, but
the points  and  are not considered as neighbors in the raster model. However, the
adjacency relationship heavily depends on the size of cell. If the cell size become sixteen
times bigger (the solid line) than the dotted line, then the two points  and  become
neighbors in the bigger cell size. This causes an inconsistent definition of proximity. On
the other hand, the topology in the vector model is usually dependent on intersection.
Namely, the topology is detected where intersection occurs. Thus, since the five points in
Figure 2(b) do not intersect, they are not considered as neighbors each other. Therefore, the
vector approach does not model point data a discrete proximity relationship properly.
Distance concepts are often suggested to overcome this problem. Points lying within a
certain distance are regarded as neighbors. This works in some sense. However, the
adjacency relationship is still inconsistent, similarly to the problems mentioned about the
raster model. Neither clustering using the raster-like proximity (Wang et al., 1997; Guha et
al., 1998, Wang et al., 1999) nor clustering using the vector-like proximity (Openshaw,
1987; Ester et al., 1996) properly incorporate proximity.

The Voronoi diagram has been proposed as an alternative way to model proximity amongst
points, overcoming the limitations of conventional data models (Gold, 1991). The Voronoi
diagram approach has a number of merits over the conventional data models. First, it
represents topology (spatial adjacency) explicitly. If two points share a Voronoi edge, then
they are treated as neighbors. This adjacency information is so fundamental that constitutes
the dual known as the Delaunay triangulation. Each Delaunay edge represents topology
between two points. Second, the various generalized Voronoi diagrams can model points
having different weight (weighted Voronoi diagram), n-th nearest distance concept (n-th
nearest Voronoi diagram) and various distance metrics (Minkowski and Karlsruhe Voronoi
diagrams) (Okabe et al., 1992). Further, Delaunay triangulation possesses a number of
                                                       
2 Two fundamental data models in GIS. The former is also called object-based or feature-based model,  the latter is called tessellation-
based or field-based model.
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unique properties, which can be successfully used for clustering methods (Kang et al.,
1997, Eldershaw and Hegland, 1997; Estivill-Castro and Houle, 1998). Moreover, it can be
constructed in only O(nlogn) time. The structure is succinct; the number of edges is linear
in the number of points and the expected number of edges incident to point are limited to a
constant value. Further, it is easy to extract the shape of clusters, which is useful for further
analysis. In addition, the triangulation is equilateral as possible, so that the unexpected
effect of long elongated edges can be minimized. Given these reasons, the Delaunay
triangulation is a very solid candidate for extracting clustering information amongst
discrete data objects.

4 DELAUNAY DIAGRAM AND DELAUNAY EDGES
In a proximity graph, points are connected by edges if and only if they seem to be close by
some proximity measure (Liotta, 1996). If this simple rule is applied to clustering, two
points belong to the same cluster if they are connected by a small enough Delaunay edge.
Hence, analysis of Delaunay edges is very promising for clustering. However, this requires
removing some ambiguities.

4.1 Problem with Delaunay Triangulation
In Delaunay triangulation, three points determine a Delaunay triangle if its circumcircle
does not contain any other points in its interior. However, in the case of co-circular
quadruples, this property becomes invalid. That is, when more than three points lie on a
circumcircle (where all other points in the data set are outside the circle), a unique
triangulation can not be defined. Whilst several possible alternatives of selecting Delaunay
edges result in a valid dual of the Voronoi diagram, for the purposes of analyzing edges
and proximity a problem arises.

           (a) Triangulation with longer diagonal                            (b) Triangulation with shorter diagonal
Figure 3. Two possible triangulations when four points are cocircular (n = 4).

Consider Figure 3. There exist two possible triangulations when four points are cocircular.
Proximity information and summary statistics are not the same in the two different cases.
Two points 2p  and 4p  are not considered as neighbors in Figure 3(a), but they are in

Figure 3(b). On the other hand, two adjacent points 1p  and 3p  in Figure 3(a) become

unrelated in Figure 3(b). Furthermore, the sum (and thus, the average) of the lengths of
Delaunay edges, the degrees (the number of edges incident to a point) and the standard
deviation vary between the two cases. The Delaunay triangulation is non-informatory in
cases were cocircularity occurs. Accepting any of the valid triangualtions inside the circle
over the other alternatives would artificially introduce structure not really existing in the
data. There are two remedies in order to overcome the problem. First, all possible edges are
taken into account. In this case, the number of edges is no longer linear to the number of
points. Moreover, it not only causes intersection between edges, but also more complex

1p

2p

3p

4p

1p

2p

3p

4p
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structure. Secondly, diagonals are removed from the Delaunay triangulation. This
Delaunay diagram makes the embedded planar map simple. If a face is not a triangle, it is
because its points are cocircular. Thus, it eliminates the statistical side effects caused by
triangles when cocircularity happens. This Delaunay diagram, constructed by removing all
ambiguous diagonals in the Delaunay triangulation, is the base of edge proximity analysis
in AMOEBA.

4.2 Perimeter, Angle and Edge
The Delaunay diagram has a number of unique characteristics and offers three direct
alternatives for clustering based on edge analysis. These are perimeter (the sum of length
of edges in a face), angle and length of Delaunay edge. Perimeter is of particular intuitive
interest since the Delaunay preserves the empty circumcircle criterion (Okabe et al., 1992).
Points determine a Delaunay face (interior) if and only if its circumcircle does not include
any other points in the data set. Perimeter itself makes sense due to this reason, when
perimeters are small, the points in the face most be close together and belong to the same
cluster. If the perimeter is large, whilst the Delaunay equilaterality is maximized, it is
because some point in the face is not in a common cluster. Unfortunately, angle and edge
do not share this intuition because they directly do not determine the Delaunay diagram.
However, as products of triangulation, they may encode significant proximity information
(Eldershaw and Hegland, 1997).

Researchers (Estivill-Castro and Houle, 1998) have successfully derived the number of
clusters using perimeter. The angle is widely used in point pattern analysis to decide
whether a set of points is randomly distributed, regularly distributed or clustered (Boots,
1986). Edges are used to detect arbitrary shapes of clusters without requiring cluster
numbers (Eldershaw and Hegland, 1997; Kang et al., 1997). Edges have a couple of
advantages over perimeters for clustering. They are simpler than perimeters. Each edge
represents an interaction between a pair of points while three points form each perimeter,
complicating defining a discrete relation of proximity between a pair of points. Secondly,
the length of edge inversely represents the strength of interaction between points (recall
that distance decays effect (Bailey and Gatrell, 1995)). For instance, in Figure 3(a) the pair
of points ( 2p , 3p ) is a stronger association (relation) than the pair of points ( 1p , 2p ).

5 AMOEBA
When there is no interaction or no correlation among points, the points do not form any
significant clusters. In other words, there are no notably shorter Delaunay edges than the
mean length of all edges.  However, interactions result in data points that may either attract
or repulse one another. Both attraction and repulsion will likely produce either clustered or
regular distributions (note that physical models of attraction of repulsion are used for
producing nice graph drawings (Eades et al., 1996)). If two points represent phenomena
that attract each other, then they become closer so that they belong to the same cluster. If
all endpoints of edges repulse one another, then the resulting distribution will be regular.
Inversely, strong attraction among a certain number of points may bring about noise and
powerful repulsion causes clusters. This is well explained in the aid of Figure 4. Figure
4(a) shows a Delaunay diagram with 17 regularly distributed points. If the point in the
center in Figure 4(b) attracts all the points in a dotted cross-shaped geometric diagram
except for four points within solid circles in the corner, then all the points within the cross-
shaped diagram move towards the lure. Consequently, the four points within solid circles
in Figure 4(b) appear as noise. This implies that noise is not only generated by repulsion
with cluster members, but also by interactions among other points in the data set.
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Similarly, if the center point in Figure 4(c) strongly pushes away four points in the dotted
rectangle, then pairs of points within ellipse-shaped diagrams become clusters without any
proper interactions amongst themselves. It is now obvious that both clusters and noise are
generated not only by interactions between their neighbors, but also other members in the
data set. Therefore, both all Delaunay edges (global effect) and neighbors (local effect) are
taken into account in AMOEBA.

(a) A Delaunay diagram (n = 17)              (b) Strong attraction                                (c) Strong repulsion
Figure 4. The effect of interaction.

5.1  Edge Analysis Criteria
Once the Delaunay diagram is constructed, clustering a set of points reduces to a one
dimensional clustering problem. Namely, classifying Delaunay edges into two groups:
edges are of interest when they are short, since they signal two points in the same cluster;
alternatively edges are not of interest because they are too long. Note that this is the
intuition behind single linkage clustering, which ensures a ratio between inter-cluster
distance and intra-cluster distance. Edges which are not of interest should be removed, and
then we can concentrate on finding sub-clusters within clusters developing further level of
the clustering hierarchy.

Figure 5. A data set with Delaunay diagram showing the principle of AMOEBA (n = 620).
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        (a) Delaunay diagram with zooming window   (b) Zoomed portion

        (c) First level clusters (d) Second level clusters
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Generally, the mean length of all edges is a reasonable cut-off value when clusters are well
separated and density does not vary too much between clusters. However, this is not
always the case. For instance, the high density of cluster A in Figure 5(c) reduces the mean
length of edges to a value much smaller than some distances between points inside less
dense clusters. This is because edges in the very high-density cluster are significantly
shorter. There are four types of edges in Delaunay diagrams. There are edges within a
cluster, between clusters, between cluster and noise and between noise points. The edges
that should be removed at a certain level include all edges between cluster and noise, all
edges between noise points and some edges between clusters. For instance, consider the
four clusters (A, B, C, and D) on the first level of a hierarchical cluster of points in Figure
5. Edges between clusters A and B are of no interest for the first level. However, edges
between clusters C1, C2 and C3 are of interest at this level to identify C, as their parent
cluster. These decisions are heavily dependent on the shape and distribution of points.

If points in clusters A, B and D removed and the same number of randomly distributed
points is inserted (dissolving these clusters), then clusters C1, C2 and C3 become
interesting clusters on the first level. Therefore, the standard deviation (representing the
type of distribution), the sum of local edges (local effect) and the sum of total edges
(global effect) are altogether used in AMOEBA to determine the filter values to identify
clusters. Obviously, all edges incident to noise must be removed in all cases. One
characteristic of noise is that the mean of edges incident to noise tends to be significantly
greater than the global mean.

Table 1. The comparison between four points shown in figure 5(b).

As shown in Table 1, a noise point P1  has a local mean of incident edges approximately
seven times greater than the global mean. On the other hand, The mean of point P3, lying
completely within cluster C1 in Figure 5, does not deviate so much from the global mean.
Similarly, a point P4 lying on the border of cluster C2 is relatively close to the global mean.
Generally speaking, points lying on the border of clusters tend to have greater local mean
than points completely within cluster, since border points have edges between clusters or
edges between cluster and noise. Noise tends to have greater local mean than border points.
Therefore, the ratio between local mean and global mean is a robust index for detecting
noise. That is, we define the noise index NI(p) of a point p  as follows:
                                          NI(p) = Local Mean / Global Mean                                           (1)
where, Global Mean represents the mean of all points in the graph and Local Mean denotes
the mean of points with edges incident to point p. Therefore, the noise index of a particular
point implies its deviation from other points.

As mentioned earlier, the distribution (and density) of points also plays a role in deciding
whether a set of points is a cluster or not. In order to make the cut-off value for short and
long edges less sensitive to the variations in density within clusters, AMOEBA calculates a
tolerance value that combines the standard deviation and the noise index. Relatively high
cut-off value should be applied to edges of points lying within clusters in order not to

GlobalP1 P2 P3 P4 Point
   Statistics

# of edges

    Local mean

 11

   71.81

     5

   17.58

    6

   8.17

     6

  12.71

1807

10.83
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remove interesting interactions. Inversely, relatively small cut-off value is set for noise to
eliminate all uninteresting edges. For this reason, the tolerance value is defined as follows:
                                        T(p) = Standard Deviation / NI(p)                                               (2)
Finally, this edge analysis is captured in a criterion function F(p). The cut-off value for
edges incident in p is defined as the sum of both global mean and tolerance value.
                                         F(p) =  Global Mean + T(p)                                                        (3)
In each level of hierarchy, edges greater than or equal to F(p) are eliminated and edges less
than the criterion function survive. Surviving edges are used for detecting clusters in the
next level.

5.2 Definitions
The following definitions are relative to a level in the clustering hierarchy.

Definition 1 Passive Edge: A Delaunay edge which is greater than or equal to the criterion
function F(p) at a certain level. Passive edges are removed from the proximity graph, since
they are not of interest any more. Thus, they are no longer used for further clustering.
Definition 2 Active Edge: A Delaunay edge that is less than the criterion function F(p) at a
certain level. Active edges and points incident to them form a new proximity graph in each
level of hierarchy. The newly created proximity graph is a subgraph of the previous graph
and is used for detecting sub-clusters.
Definition 3 Active Path: A path in the current proximity graph where every edge in the
path is an active edge.
 Definition 4 Cluster: A set of points connected by active paths in the same level.
Alternatively, If there exists an active path between a pair of points, the pair belongs to the
same cluster.
Definition 5 Noise: A point that has no active edge incident to itself. In other words, all
edges incident to noise are passive edges.
Definition 6 Passive Cluster: A cluster where there still exists an active path between any
pair of points in the cluster after another further AMOEBA’s splitting process. An
AMOEBA splitting process is the classification into interesting (formally active edges) and
non-interesting (passive edges). Passive clusters are the leaves of the clustering hierarchy
because their points are in one connected component before and after the AMOEBA’s
binary fission. Actually, because of the statistical considerations in AMOEBA, there is no
large difference among the strength of interactions amongst points in passive clusters; i.e.
the splitting process does not generate meaningful sub-clusters. Thus, no further binary
fission is required for passive clusters.
Definition 7 Active Cluster: A cluster where there does not exist an active path between all
pairs of points in the cluster after another further AMOEBA’s split. Here, a cluster has
significantly varying internal interactions in some sense. The edge split is considered to
generate meaningful sub-clusters. Thus, further "binary fission" is required to reveal the
structure of active clusters. For instance, clusters A, B and D in Figure 5(c) are passive
clusters by the first level, while cluster C is an active cluster. The active cluster requires
further binary fission towards the next level. As a result, the active cluster C produces
meaningful sub-clusters C1, C2 and C3 which are passive clusters in the next level; refer to
Figure 5(d).

5.3 The Algorithm
procedure AMOEBA(Graph)
begin
    WriteCluster(Graph);             //Write the Graph as a cluster
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    NumberOfEdges = CalculateMeanAndStdev(Graph, GlobalMean, GlobalStDev);
    if (NumberOfEdges less than or equals to ONE)     return;  // Zero or one edge is incident
    for each node v in Graph do{
        EdgeList = Graph.adjacent_edges(v);                    // Extract edges incident to node v
        LocalMean = CalculateLocalMean(EdgeList);
        for each edge e in EdgeList do{
           ToleranceValue = GlobalStDev * GlobalMean / LocalMean;
            if (e.distance()  > (GlobalMean + ToleranceValue))
                Graph.delete_edge(e);
        }
    }
    if (Graph.degree(v) equals to zero)
        Graph.delete_node(v);                                  // Eliminate noises
    ConnectedComponents(Graph, ComponentNumber); // Calculate connected components
    for each connected component c do{
        SubGraph = ConstructSubGraph(Graph, ComponentNumber, c);
        if (NumberOfEdges not equals SubGraph.number_of_nodes())
           AOEMEBA(SubGraph);
    }
end

Construction of the Delaunay diagram is the first step. The diagram is a connected planar
plane-embedded graph passed to the AMOEBA algorithm. Recursively, all points in a
connected components are reported as a cluster. Thus, every edge is tested for the criterion
function in Equation (1) where the global values are adjusted to the current level. After
eliminating passive edges and noise only active edges remaining in the diagram, but may
define new connected components.  AMOEBA’ reproduction algorithm is called for each
connected component unless no new connected components are created from the passive
cluster and the end of the recursion.

5.4 Time Complexity
Time complexity is of great importance, especially for very large data set. AMOEBA is
specially designed for clustering of spatial data. AMOEBA requires O(nlogn) time for
constructing the Delaunay diagram in the initialization phase. Once the diagram is
constructed, AMOEBA repeatedly calls itself until termination conditions are met. At the
root level of the clustering hierarchy, the input number of edges is O(n), since it is linear to
the number of input points (n). In each proximity graph, testing all points for the criterion
function (1) takes O(n) time complexity since extracting local edges for each point only
takes constant time. Since computing connected components is linear to the sum of both
number of edges and number of points, this step only requires O(n) time. Therefore, each
AMOEBA procedure requires O(n) time complexity. The structure of AMOEBA’s binary
fission is similar to that of binary tree, removing a constant fraction of the edges at each
level (the cut-off value is very likely to be close to the median of the edge lengths). Thus,
the expected depth is at most O(logn). Consequently, the time complexity of proposed
clustering is O(nlogn) time. This compares extremely favorably with other clustering
methods for spatial clustering.

6 WEIGHTED DENDROGRAM
Hierarchical clustering is traditionally represented by a dendrogram. Each node in the tree
graph represents a cluster. In agglomerative clustering, each cluster consists of only a
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single point in the first level. These primitive clusters are successively merged into super
clusters until the whole data set becomes a cluster. On the other hand, the whole data set
represents a cluster in the first level in partitioning clustering. This cluster is repeatedly
divided into sub-clusters until each point forms a cluster.

Figure 6. Two Dendrograms (n = 6).

Dendrograms display the hierarchy of clusters in some sense. However, as the number of
points increases, the depth of tree becomes longer. This not only decays the readability of
the display, but requires more space to fit it. In addition, it is difficult to figure out the ratio
of noise at each level. Moreover, the relative size of a cluster is not easily recognized. It is
also hard to compare the significance of either intra-level clusters or inter-level clusters.
For these reasons, dendograms do not represent well the hierarchical structure revealed by
AMOEBA, especially when early stops (homogeneous clusters) occur. These drawbacks
are resolved by incorporating weights to clusters into the dendrogram. Weights are
explained by the length of rectangles in the diagram. This diagram is called Pendrogram3 .
Recall that points having no active edges are noise (Definition 5 in Section 5.2).
Therefore, two points connected by a single active edge form a leaf in the Pendrogram.
With the aid of Pendrograms, users can easily count both the total number of clusters and
the number of intra-level clusters. For instance, Figure 7 suggests 8 clusters in total, 4
clusters in the first level and 3 clusters in the second level. Analogies and comparisons
between clusters sizes and level can easily reveal the relative significance of clusters. The
size of noise creates a gap (or mismatch) in each level, which equally separates intra-level
clusters.

As illustrated in Figure 5(c), noise is significant after the first AMOEBA’s binary fission.
Thus, clusters in the first level are separated with a large gap. On the other hand, the split
of cluster C in Figure 5(d) generates no noise. Therefore, sub-clusters C1, C2 and C3 are
separated without gaps in Figure 7. Pendrograms have a number of merits over traditional
dendrograms. They enhance the readability of the display. In addition, they suggest the
distribution of interactions within clusters. Interactions in clusters A, B or D are
considered as homogeneous, since they do not derive any sub-clusters. Meanwhile,
interactions within cluster C are to be considered heterogeneous. Further, it makes possible

                                                       
3 Pendrogram denotes weighted dendrogram; from the Greek pento (meaning weight) and dendrogram.

1 2 3 4 5 6

1 2 3 4 5 6
(a) Agglomerative approach (b) Divisive approach

Level 0

Level 1

Level 2

ABC D

 Figure 7. Pendrogram (n = 620, the points are the same as those in Figure 5).
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to compare or contrast between intra-level clusters or between inter-level clusters. This is
much simpler and illustrative than dendrograms.

7 PERFORMANCE EVALUATION
We used a synthetic data set and a real world data set for illustrating the robustness of
AMOEBA. The remarkable results are provided in the following sub-sections.

7.1 Synthetic Data set

As shown in Figure 8(c), three clusters A, B and C are identified in the first level. These
clusters are active clusters; thus they are further split. All clusters produced in the second
level (BA, BB and CA ~ CF) are passive clusters except for the cluster AA. The active
cluster in this level produces its sub-cluster AAA. Consequently, AMOEBA correctly
suggests 14 clusters. Obviously, AMOEBA spots not only arbitrary shape of clusters, (that
is, not only convex clusters as opposed to K-means), but different density clusters.

7.2 Real Data set
Despite of the complex structure of real data set, AMOEBA discovers all possible clusters
hidden in the data set. For instance, a cluster A is identified in the first level as shown in
Figure 9(b), directly overlaying the main urban area. This active cluster is further
partitioned into two clusters AA and AB in the next level. All possible clusters appear in
the Pendrogram in Figure 9(j). Users are more interested in relatively stronger clusters.
Clusters with more edges (interactions) are easily selected by simply choosing relatively
larger rectangles in the Pendrogram.

(a) Points in the plane (b) Delaunay diagram (c) First level clusters

(d) Sub-cluster of cluster AA (e) Sub-clusters of cluster B

(g) Sub-cluster of cluster AA (f) Pendrogram

C B

A

AA
BA

BB

CA

CB

CC

CD

CFCE

AAA

(f) Sub clusters of cluster C

 Figure 8. A synthetic data set (n = 2500).
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8 FINAL REMARKS
AMOEBA is a clustering method especially designed for spatial data sets. It incorporates
global first-order effects and local second-order effects. Hence, it is less sensitive to noise,
outliers and the type of distribution. High densities in small areas affecting global
indicators do not misguide it. It does not require any parameters from user and generates
multi-level clusters. High quality clustering is reported, since AMOEBA incorporates
proper spatial proximity and gradually analyzes the entire data set. AMOEBA strategy is
accompanied with a visualization of the resulting clustering hierarchy named Pendrogram.
All this within O(nlogn) expected time.

(a) Crime data set in Brisbane (b) First level cluster A (c) Second level cluster AA

(d) Second level cluster AB (e) Third level cluster ABA (f) Third level cluster ABB

(g) Fifth level cluster ABBAA (h) Fifth level cluster ABBAB (i) Fifth level cluster ABBAC

A

AA

AB
ABA

ABB

ABBAA

ABBAB

ABBAC

(j) Pendrogram from level 0 to 5

Figure 9. Crime data set from Brisbane, Australia (n = 494).
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Phenomena geographically coincide in the real world. There is no reason why a clustering
hierarchy must be a partition. A variety of types of crime may occur in the same railway
station or more than two shopping centers may coincide in a large geographical scale.
Further work will consider clustering with coincident points. Future works also include
finding relationship between themes and the use of information on correlated themes for
determining better termination conditions. Incorporating n-nearest neighbors or other
estimates (perimeter, angle and area) attracts our interests as well. Clustering weighted
points using weighted Voronoi diagram is also of interest.
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