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Abstract
Partiti oning a large set of objects into homogeneous clusters is a
fundamental operation in data mining. The k-means algorithm is
best suited for implementing this operation because of its
eff iciency in clustering large data sets. However, working only on
numeric values limits its use in data mining because data sets in
data mining often contain categorical values. In this paper we
present an algorithm, called k-modes, to extend the k-means
paradigm to categorical domains. We introduce new dissimilarity
measures to deal with categorical objects, replace means of
clusters with modes, and use a frequency based method to update
modes in the clustering process to minimise the clustering cost
function. Tested with the well known soybean disease data set
the algorithm has demonstrated a very good classification
performance. Experiments on a very large health insurance data
set consisting of half a milli on records and 34 categorical
attributes show that the algorithm is scalable in terms of both the
number of clusters and the number of records.

1 Introduction
Partitioning a set of objects into homogeneous clusters is a
fundamental operation in data mining. The operation is
needed in a number of data mining tasks, such as
unsupervised classification and data summation, as well as
segmentation of large heterogeneous data sets into smaller
homogeneous subsets that can be easil y managed,
separately modelled and analysed. Clustering is a popular
approach used to implement this operation. Clustering
methods partition a set of objects into clusters such that
objects in the same cluster are more similar to each other
than objects in different clusters according to some defined
criteria. Statistical clustering methods (Anderberg 1973,
Jain and Dubes 1988) use similarity measures to partition
objects whereas conceptual clustering methods cluster
objects according to the concepts objects carry (Michalski
and Stepp 1983, Fisher 1987).

The most distinct characteristic of data mining is that
it deals with very large data sets (gigabytes or even
terabytes). This requires the algorithms used in data

mining to be scalable. However, most algorithms currently
used in data mining do not scale well when applied to very
large data sets because they were initiall y developed for
other applications than data mining which involve small
data sets. The study of scalable data mining algorithms has
recently become a data mining research focus (Shafer et al.
1996).

In this paper we present a fast clustering algorithm
used to cluster categorical data. The algorithm, called k-
modes, is an extension to the well known k-means
algorithm (MacQueen 1967). Compared to other clustering
methods the k-means algorithm and its variants
(Anderberg 1973) are eff icient in clustering large data sets,
thus very suitable for data mining. However, their use is
often limited to numeric data because these algorithms
minimise a cost function by calculating the means of
clusters. Data mining applications frequently involve
categorical data. The traditional approach to converting
categorical data into numeric values does not necessaril y
produce meaningful results in the case where categorical
domains are not ordered. The k-modes algorithm in this
paper removes this limitation and extends the k-means
paradigm to categorical domains whilst preserving the
efficiency of the k-means algorithm.

In (Huang 1997) we have proposed an algorithm,
called k-prototypes, to cluster large data sets with mixed
numeric and categorical values. In the k-prototypes
algorithm we define a dissimilarity measure that takes into
account both numeric and categorical attributes. Assume
sn is the dissimilarity measure on numeric attributes

defined by the squared Euclidean distance and sc is the

dissimilarity measure on categorical attributes defined as
the number of mismatches of categories between two
objects. We define the dissimilarity measure between two
objects as sn + γsc, where γ is a weight to balance the two

parts to avoid favouring either type of attribute. The
clustering process of the k-prototypes algorithm is similar
to the k-means algorithm except that a new method is used
to update the categorical attribute values of cluster



prototypes. A problem in using that algorithm is to choose
a proper weight. We have suggested the use of the average
standard deviation of numeric attributes as a guide in
choosing the weight.

The k-modes algorithm presented in this paper is a
simpli fication of the k-prototypes algorithm by only taking
categorical attributes into account. Therefore, weight γ is
no longer necessary in the algorithm because of the
disappearance of sn. If numeric attributes are involved in a

data set, we categorise them using a method as described
in (Anderberg 1973). The biggest advantage of this
algorithm is that it is scalable to very large data sets.
Tested with a health insurance data set consisting of half a
milli on records and 34 categorical attributes, this
algorithm has shown a capabilit y of clustering the data set
into 100 clusters in about a hour using a single processor
of a Sun Enterprise 4000 computer.

Ralambondrainy (1995) presented another approach to
using the k-means algorithm to cluster categorical data.
Ralambondrainy’s approach needs to convert multiple
category attributes into binary attributes (using 0 and 1 to
represent either a category absent or present) and to treat
the binary attributes as numeric in the k-means algorithm.
If it is used in data mining, this approach requires to
handle a large number of binary attributes because data
sets in data mining often have categorical attributes with
hundreds or thousands of categories. This will i nevitably
increase both computational and space costs of the k-
means algorithm. The other drawback is that the cluster
means, given by real values between 0 and 1, do not
indicate the characteristics of the clusters. Comparatively,
the k-modes algorithm directly works on categorical
attributes and produces the cluster modes, which describe
the clusters, thus very useful to the user in interpreting the
clustering results.

Using Gower’s similarity coeff icient (Gower 1971)
and other dissimilarity measures (Gowda and Diday 1991)
one can use a hierarchical clustering method to cluster
categorical or mixed data. However, the hierarchical
clustering methods are not eff icient in processing large
data sets. Their use is limited to small data sets.

The rest of the paper is organised as follows.
Categorical data and its representation are described in
Section 2. In Section 3 we briefly review the k-means
algorithm and its important properties. In Section 4 we
discuss the k-modes algorithm. In Section 5 we present
some experimental results on two real data sets to show the
classification performance and computational eff iciency of
the k-modes algorithm. We summarise our discussions and
describe our future work plan in Section 6.

2 Categorical Data
Categorical data as referred to in this paper is the data
describing objects which have only categorical attributes.

The objects, called categorical objects, are a simpli fied
version of the symbolic objects defined in (Gowda and
Diday 1991). We consider all numeric (quantitative)
attributes are categorised and do not consider categorical
attributes that have combinational values, e.g., Languages-
spoken (Chinese, English). The following two subsections
define the categorical attributes and objects accepted by the
algorithm.

2.1 Categorical Domains and Attributes
Let A1, A2, …, Am be m attributes describing a space ΩΩ
and DOM(A1), DOM(A2), …, DOM(Am) the domains of

the attributes. A domain DOM(Aj) is defined as categorical

if it is finite and unordered, e.g., for any a, b ∈ DOM(Aj),

either a = b or a ≠ b. Aj is called a categorical attribute. ΩΩ
is a categorical space if all A1, A2, …, Am are categorical.

A categorical domain defined here contains only
singletons. Combinational values li ke in (Gowda and
Diday 1991) are not allowed. A special value, denoted by
ε, is defined on all categorical domains and used to
represent missing values. To simpli fy the dissimilarity
measure we do not consider the conceptual inclusion
relationships among values in a categorical domain li ke in
(Kodratoff and Tecuci 1988) such that car and vehicle are
two categorical values in a domain and conceptually a car
is also a vehicle. However, such relationships may exist in
real world databases.

2.2 Categorical Objects
Like in (Gowda and Diday 1991) a categorical object X ∈
ΩΩ is logicall y represented as a conjunction of attribute-
value pairs [A1 = x1] ∧ [A2 = x2] ∧…∧ [Am = xm], where

xj ∈ DOM(Aj) for 1 ≤ j ≤ m. An attribute-value pair [Aj =

xj] is called a selector in (Michalski and Stepp 1983).

Without ambiguity we represent X as a vector [x1, x2, …,

xm]. We consider every object in ΩΩ has exactly m attribute

values. If the value of attribute Aj is not available for an

object X, then Aj = ε.

Let X = { X1, X2, …, Xn} be a set of n categorical

objects and X ⊆ ΩΩ. Object Xi is represented as [xi,1, xi,2,

…, xi,m]. We write Xi = Xk if xi,j = xk,j for 1 ≤ j ≤ m. The

relation Xi = Xk does not mean that Xi, Xk are the same

object in the real world database. It means the two objects
have equal categorical values in attributes A1, A2, …, Am.

For example, two patients in a data set may have equal
values in attributes Sex, Disease and Treatment. However,
they are distinguished in the hospital database by other
attributes such as ID and Address which were not selected
for clustering.



Assume X consists of n objects in which p objects are
distinct. Let N be the cardinalit y of the Cartesian product
DOM(A1) x DOM(A2) x … x DOM(Am). We have p ≤ N.

However, n may be larger than N, which means there are
duplicates in X.

3 The K-means Algorithm
The k-means algorithm (MacQueen 1967, Anderberg
1973) is built upon four basic operations: (1) selection of
the initial k means for k clusters, (2) calculation of the
dissimilarity between an object and the mean of a cluster,
(3) allocation of an object to the cluster whose mean is
nearest to the object, (4) Re-calculation of the mean of a
cluster from the objects allocated to it so that the intra
cluster dissimilarity is minimised. Except for the first
operation, the other three operations are repeatedly
performed in the algorithm until the algorithm converges.

The essence of the algorithm is to minimise the cost
function
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where n is the number of objects in a data set X, Xi ∈ X, Ql

is the mean of cluster l, and yi l, is an element of a partition

matrix Y  x  ln  as in (Hand 1981). d is a dissimilarity

measure usually defined by the squared Euclidean
distance.

There exist a few variants of the k-means algorithm
which differ in selection of the initial k means,
dissimilarity calculations and strategies to calculate cluster
means (Anderberg 1973, Bobrowski and Bezdek 1991).
The sophisticated variants of the k-means algorithm
include the well -known ISODATA algorithm (Ball and
Hall 1967) and the fuzzy k-means algorithms (Ruspini
1969, 1973).

Most k-means type algorithms have been proved
convergent (MacQueen 1967, Bezdek 1980, Selim and
Ismail 1984). The k-means  algorithm has the following
important properties.

1. It is eff icient in processing large data sets. The
computational complexity of the algorithm is
O(tkmn), where m is the number of attributes, n is
the number of objects, k is the number of clusters,
and t is the number of iterations over the whole data
set. Usually, k, m, t << n. In clustering large data
sets the k-means algorithm is much faster than the
hierarchical clustering algorithms whose general
computational complexity is O(n2) (Murtagh 1992).

2. It often terminates at a local optimum (MacQueen
1967, Selim and Ismail 1984). To find out the
global optimum, techniques such as deterministic
annealing (Kirkpatrick et al. 1983, Rose et al. 1990)
and genetic algorithms (Goldberg 1989, Murthy

and Chowdhury 1996) can be incorporated with the
k-means algorithm.

3. It works only on numeric values because it
minimises a cost function by calculating the means
of clusters.

4. The clusters have convex shapes (Anderberg 1973).
Therefore, it is diff icult to use the k-means
algorithm to discover clusters with non-convex
shapes.

One diff iculty in using the k-means algorithm is to specify
the number of clusters. Some variants li ke ISODATA
include a procedure to search for the best k at the cost of
some performance.

The k-means algorithm is best suited for data mining
because of its eff iciency in processing large data sets.
However, working only on numeric values limits its use in
data mining because data sets in data mining often have
categorical values. Development of the k-modes algorithm
to be discussed in the next section was motivated by the
desire to remove this limitation and extend its use to
categorical domains.

4 The K-modes Algorithm
The k-modes algorithm is a simpli fied version of the k-
prototypes algorithm described in (Huang 1997). In this
algorithm we have made three major modifications to the
k-means algorithm, i.e., using different dissimilarity
measures, replacing k means with k modes, and using a
frequency based method to update modes. These
modifications are discussed below.

4.1 Dissimilarity Measures
Let X, Y be two categorical objects described by m
categorical attributes. The dissimilarity measure between X
and Y can be defined by the total mismatches of the
corresponding attribute categories of the two objects. The
smaller the number of mismatches is, the more similar the
two objects. Formally,
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d(X,Y) gives equal importance to each category of an
attribute. If we take into account the frequencies of
categories in a data set, we can define the dissimilarity
measure as
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where nx j
, n y j

are the numbers of objects in the data set

that have categories xj and yj for attribute j. Because



d X Yχ2 ( , ) is similar to the chi-square distance in

(Greenacre 1984), we call it  chi-square distance. This
dissimilarity measure gives more importance to rare
categories than frequent ones. Eq. (4) is useful in
discovering under-represented object clusters such as
fraudulent claims in insurance databases.

4.2 Mode of a Set
Let X be a set of categorical objects described by
categorical attributes A1, A2, …, Am.

Definition: A mode of X is a vector Q = [q1, q2, …, qm]

∈ ΩΩ  that minimises
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where  X = { X1, X2, …, Xn}  and d can be either defined as

in Eq. (2) or in Eq. (4). Here, Q is not necessaril y an
element of X.

4.3 Find a Mode for a Set
Let nck j,

be the number of objects having category ck,j in

attribute Aj and f A c
n

nr j k j

ck j
( | ),

,
= =X  the relative

frequency of category ck,j in X.

Theorem: The function D(Q,X) is minimised
iff f A qr j j( | )= X  ≥ f A cr j k j( | ),= X  for qj ≠ ck,j for all j

= 1..m.

The proof of the theorem is given in the Appendix.
The theorem defines a way to find Q from a given X,

and therefore is important because it allows to use the k-
means paradigm to cluster categorical data without losing
its eff iciency. The theorem implies that the mode of a data
set X is not unique. For example, the mode of set { [a, b],
[a, c], [c, b], [b, c]} can be either [a, b] or [a, c].

4.4 The k-modes Algorithm
Let { S1, S2, …, Sk} be a partition of X, where Sl ≠ ∅ for 1

≤ l ≤ k, and { Q1,Q2,…,Qk} the modes of { S1, S2, …, Sk} .

The total cost of the partition is defined by
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where yi,l is an element of a partition matrix Y  x  ln  as in

(Hand 1981) and d can be either defined as in Eq. (2) or in
Eq. (4).

Similar to the k-means algorithm, the objective of
clustering X is to find a set { Q1, Q2, …, Qk} that can

minimise E. Although the form of this cost function is the
same as Eq. (1), d is different. Eq. (6) can be minimised by
the k-modes algorithm below.

The k-modes algorithm consists of the following steps
(refer to (Huang 1997) for the detailed description of the
algorithm):

1. Select k initial modes, one for each cluster.
2. Allocate an object to the cluster whose mode is the

nearest to it according to d. Update the mode of the
cluster after each allocation according to the
Theorem.

3. After all objects have been allocated to clusters,
retest the dissimilarity of objects against the current
modes. If an object is found such that its nearest
mode belongs to another cluster rather than its
current one, reallocate the object to that cluster and
update the modes of both clusters.

4. Repeat 3 until no object has changed clusters after a
full cycle test of the whole data set.

Like the k-means algorithm the k-modes algorithm also
produces locall y optimal solutions that are dependent on
the initial modes and the order of objects in the data set. In
Section 5 we use a real example to show how appropriate
initial mode selection methods can improve the clustering
results.

In our current implementation of the k-modes
algorithm we include two initial mode selection methods.
The first method selects the first k distinct records from the
data set as the initial k modes. The second method is
implemented in the following steps.

1. Calculate the frequencies of all categories for all
attributes and store them in a category array in the
descending order of frequency as shown in Figure
1. Here, ci,j denotes category i of attribute j and

f(ci,j) ≥ f(ci+1,j) where f(ci,j) is the frequency of

category ci,j.
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 Figure 1.  The category array of a data set with 4 attributes having 4,

                  2, 5, 3 categories respectively.
 

2. Assign the most frequent categories equally to the
initial k modes. For example in Figure 1, assume k
= 3. We assign Q1 = [q1,1=c1,1, q1,2=c2,2, q1,3=c3,3,

q1,4=c1,4], Q2 = [q2,1=c2,1, q2,2=c1,2, q2,3=c4,3,

q2,4=c2,4] and Q3 = [q3,1=c3,1, q3,2=c2,2, q3,3=c1,3,

q3,4=c3,4].

3. Start with Q1. Select the record most similar to Q1

and substitute Q1 with the record as the first initial



mode. Then select the record most similar to Q2

and substitute Q2 with the record as the second

initial mode. Continue this process until Qk is

substituted. In these selections Ql ≠ Qt for l ≠ t.

Step 3 is taken to avoid the occurrence of empty clusters.
The purpose of this selection method is to make the initial
modes diverse, which can result in better clustering results
(see Section 5.1.3).

5 Experimental Results
We used the well known soybean disease data to test
classification performance of the algorithm and another
large data set selected from a health insurance database to
test computational eff iciency of the algorithm. The second
data set consists of half a milli on records, each being
described by 34 categorical attributes.

5.1 Tests on Soybean Disease Data

5.1.1 Test Data Sets
The soybean disease data is one of the standard test data
sets used in the machine learning community. It has often
been used to test conceptual clustering algorithms
(Michalski and Stepp 1983, Fisher 1987). We chose this
data set to test our algorithm because of its publicity and
because all it s attributes can be treated as categorical
without categorisation.

The soybean data set has 47 observations, each being
described by 35 attributes. Each observation is identified
by one of the 4 diseases -- Diaporthe Stem Canker,
Charcoal Rot, Rhizoctonia Root Rot, and Phytophthora
Rot. Except for Phytophthora Rot which has 17
observations, all other diseases have 10 observations each.
Eq. (2) was used in the tests because all disease classes are
almost equally distributed. Of the 35 attributes we only
selected 21 because the other 14 have only one category.

To study the effect of record order, we created 100 test
data sets by randomly reordering the 47 observations. By
doing this we were also selecting different records for the
initial modes using the first selection method.  All disease
identifications were removed from the test data sets.

5.1.2 Clustering Results
We used the k-modes algorithm to cluster each test data set
into 4 clusters with the two initial mode selection methods
and produced 200 clustering results. For each clustering
result we used a misclassification matrix to analyse the
correspondence between clusters and the disease classes of
the observations. Two misclassification matrices for the
test data sets 1 and 9 are shown in Figure 2. The capital
letters D, C, R, P in the first column of the matrices
represent the 4 disease classes. In figure 2(a) there is one

to one correspondence between clusters and disease
classes, which means the observations in the same disease
classes were clustered into the same clusters. This
represents a complete recovery of the 4 disease classes
from the test data set.

In Figure 2(b) two observations of the disease class P
were misclassified into cluster 1 which was dominated by
the observations of the disease class R. However, the
observations in the other two disease classes were correctly
clustered into clusters 3 and 4. This clustering result can
also be considered good.

 Cluster 1 Cluster 2  Cluster 3 Cluster 4
D 10
C 10
R 10
P 17

(a)

Cluster 1 Cluster 2  Cluster 3 Cluster 4
D 10
C 10
R 10
P 2 15

                                            (b)

Figure 2. Two misclassification matrices. (a) Correspondence between
clusters of test data set 1 and disease classes. (b)
Correspondence between clusters of test data set 9 and
disease classes.

If we use the number of misclassified observations as a
measure of a clustering result, we can summarise the 200
clustering results in Table 1. The first column in the table
gives the number of misclassified observations. The second
and third columns show the numbers of clustering results.

Table 1.
Misclassified
Observations

First Selection Method Second Selection Method

0 13 14

1 7 8

2 12 26

3 4 9

4 7 6

5 2 1

>5 55 36

If we consider the number of misclassified
observations less than 6 as a “good” clustering result,  then
45 good results were produced with the first selection
method and 64 good results with the second selection
method. Both selection methods produced more than 10
complete recovery results (0 misclassification). These
results indicate that if we randomly choose one test data
set, we have a 45% chance to obtain a good clustering
result with the first selection method and a 64% chance
with the second selection method.



Table 2 shows the relationships between the clustering
results and the clustering costs (values of Eq. (6)). The
numbers in brackets are the numbers of clustering results
having the corresponding clustering cost values. All total
mismatches of “bad” clustering results are greater than
those of “good” clustering results. The minimal total
mismatch number in these tests is 194 which is li kely the
global minimum. These relationships indicate that we can
use the clustering cost values from several runs to choose a
good clustering result i f the original classification of data
is unknown.

We did the same tests using a k-means algorithm
which is based on the versions 3 and 5 of subroutine
KMEAN in (Anderberg 1973). In these tests we simply
treated all attributes as numeric and used the squared
Euclidean distance as the dissimilarity measure. The initial
means were selected by the first method. Of 100 clustering
results we only got 4 good ones of which 2 had a complete
recovery. Comparing the cost values of the 4 good
clustering results with other clustering results, we found
that the clustering results and the cost values are not
related. Therefore, a good clustering result cannot be
selected according to its cost value.

Table 2.
Misclassified
Observations

Total mismatches for
method 1

Total mismatches for
method 2

0 194(13) 194(14)

1 194(7) 194(7), 197(1)

2 194(12) 194(25),195(1)

3 195(2),197(1), 201(1) 195(6),196(2),197(1)

4 195(2),196(3),197(2) 195(4),196(1),197(1)

5 197(2) 197(1)

>5 203-261 209-254

Table 3.
No. of classes No. of runs Mean cost Std Dev

1 1 247 -

2 28 222.3 24.94

3 66 211.9 19.28

4 5 194.6 1.34

The effect of initial modes on clustering results is
shown in Table 3. The first column is the number of
disease classes the initial modes have and the second is the
corresponding number of runs with the number of disease
classes in the initial modes. This table indicates that the
more diverse the disease classes are in the initial modes,
the better the clustering results. The initial modes selected
by the second method have 3 disease types, therefore more
good cluster results were produced than by the first
method.

From the modes and category distributions of different
attributes in different clusters the algorithm can also

produce discriminative characteristics of clusters similar to
those in (Michalski and Stepp 1983).

5.2 Tests on a Large Data Set
The purpose of this experiment was to test the scalabilit y
of the k-modes algorithm in clustering very large real
world data sets. We selected a large data set from a health
insurance database. The data set consists of 500000
records, each being described by 34 categorical attributes
in which 4 have more than 1000 categories each.

We tested two scalabiliti es of the algorithm using this
large data set. The first one is the scalabilit y of the
algorithm against the number of clusters for a given
number of objects and the second is the scalabilit y against
the number of objects for a given number of clusters.
Figures 3 and 4 show the results produced using a single
processor of a Sun Enterprise 4000 computer. The plots in
the figures represent the average time performance of 5
independent runs.
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Figure 3.  Scalability to the number of clusters in clustering 500000
records.
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Figure 4. Scalability to the number of records clustered into 100
clusters.

These results are very encouraging because they show
clearly a linear increase in time as both the number of
clusters and number of records increase. Clustering half a
million objects into 100 clusters took about a hour, which
is quite acceptable. Compared with the results of clustering
data with mixed values (Huang 1997), this algorithm is
much faster than its previous version because it needs
many less iterations to converge.



The above soybean disease data tests indicate that a
good clustering result should be selected from multiple
runs of the algorithm over the same data set with different
record orders and/or different initial modes. This can be
done in practice by running the algorithm in parallel on a
parallel computing system. Other parts of the algorithm
such as the operation to allocate an object to a cluster can
also be parallelised to improve the performance.

6 Summary and Future Work
The biggest advantage of the k-means algorithm in data
mining applications is its eff iciency in clustering large
data sets. However, its use is limited to numeric values.
The k-modes algorithm presented in this paper has
removed this limitation whilst preserving its efficiency.

The k-modes algorithm has made the following
extensions to the k-means algorithm:

1. replacing means of clusters with modes,
2. using new dissimilarity measures to deal with

categorical objects, and
3. using a frequency based method to update modes of

clusters.
These extensions allow us to use the k-means paradigm
directly to cluster categorical data without need of data
conversion.

Another advantage of the k-modes algorithm is that
the modes give characteristic descriptions of clusters.
These descriptions are very important to the user in
interpreting clustering results.

Because data mining deals with very large data sets,
scalabilit y is a basic requirement to the data mining
algorithms. Our experimental results have demonstrated
that the k-modes algorithm is indeed scalable to very large
and complex data sets in terms of both the number of
records and the number of clusters. In fact the k-modes
algorithm is faster than the k-means algorithm because our
experiments have shown that the former often needs less
iterations to converge than the later.

Our future work plan is to develop and implement a
parallel k-modes algorithm to cluster data sets with
milli ons of objects. Such an algorithm is required in a
number of data mining applications, such as partitioning
very large heterogeneous sets of objects into a number of
smaller and more manageable homogeneous subsets that
can be more easil y modelled and analysed, and detecting
under-represented concepts, e.g., fraud in a very large
number of insurance claims.
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Appendix

The theorem in Section 4.3 can be proved as follows (Aj

stands for DOM(Aj) here):
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