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Abstract

Partitioning a large set of objects into homogeneous clusters is a
fundamental operation in data mining. The k-means algarithm is
best suited for implementing this operation because of its
efficiency in clustering large data sets. However, working anly on
numeric values limits its use in data mining because data sets in
data mining dften contain categarical values. In this paper we
present an agaithm, called k-modes, to extend the k-means
paradigm to categorical domains. We introduce new disgmil arity
measures to ded with categorical objects, replace means of
clusters with modes, and wse afrequency based method to update
modes in the clustering process to minimise the clustering cost
function. Tested with the well known soybean dsesse data set
the dgoaithm has demonstrated a very goad clasdfication
performance. Experiments on a very large hedth insurance data
set consisting o half a million records and 34 categorical
attributes how that the dgorithm is salable in terms of both the
number of clusters and the number of records.

1 Introduction

Partitioning a set of objeds into homogeneous clustersis a
fundamental operation in data mining. The operation is
needed in a number of data mining tasks, such as
unsupervised classfication and data summation, as well as
segmentation of large heterogeneous data sets into small er
homogeneous sibsets that can be esly managed,
separately modelled and analysed. Clustering is a popular
approach used to implement this operation. Clustering
methods partition a set of oljeds into clusters such that
obeds in the same duster are more similar to each other
than ohjeds in different clusters according to some defined
criteria. Statistical clustering methods (Anderberg 1973
Jain and Dubes 1988 use simil arity measures to partition
obeds whereas conceptual clustering methods cluster
objeds according to the @mncepts ohjeds carry (Michal ski
andStepp 1983, Fisher 1987).

The most distinct characteristic of data mining is that
it deals with very large data sets (gigabytes or even
terabytes). This requires the algorithms used in data

mining to be scalable. However, most algorithms currently
used in data mining do not scale well when applied to very
large data sets because they were initially developed for
other applications than data mining which involve small
data sets. The study of scalable data mining algorithms has
recently become a data mining research focus (Shafer et a.
1996).

In this paper we present a fast clustering algorithm
used to cluster categorical data. The algorithm, called k-
modes, is an extenson to the wel known k-means
algorithm (MacQueen 1967). Compared to aher clustering
methods the k-means agorithm and its variants
(Anderberg 1973 are dficient in clustering large data sets,
thus very suitable for data mining. However, their use is
often limited to numeric data becuse these algorithms
minimise a cost function by calculating the means of
clusters. Data mining applications frequently involve
categorical data. The traditional approach to converting
categorical data into numeric values does not necessarily
produce meaningful results in the ase where ategorical
domains are not ordered. The k-modes agorithm in this
paper removes this limitation and extends the k-means
paradigm to categorical domains whilst preserving the
efficiency of thek-means algorithm.

In (Huang 1997 we have proposed an algorithm,
called k-prototypes, to cluster large data sets with mixed
numeric and categorical values. In the k-prototypes
algorithm we define a dissmil arity measure that takes into
acoount bath numeric and categorical attributes. Assume
Sy is the dissmilarity measure on numeric attributes

defined by the squared Euclidean distance and s; is the

dissmilarity measure on categorical attributes defined as
the number of mismatches of categories between two
obeds. We define the dissmil arity measure between two
objeds as s, + y5;, Where yis a weight to balance the two

parts to avoid favouring either type of attribute. The
clustering process of the k-prototypes algorithm is similar
to the k-means algorithm except that a new method is used
to update the categorical attribute values of cluster
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prototypes. A problem in using that algorithm is to choose
a proper weight. We have suggested the use of the average
standard deviation of numeric attributes as a guide in
choosing the weight.

The k-modes algorithm presented in this paper is a
simplification of the k-prototypes algorithm by only taking
categorical attributes into acoount. Therefore, weight yis
no longer necessry in the algorithm becuse of the
disappearance of sn. If numeric attributes are involved in a

data set, we ategorise them using a method as described
in (Anderberg 1973. The biggest advantage of this
algorithm is that it is salable to very large data sets.
Tested with a health insurance data set consisting of half a
million records and 34 categorical attributes, this
algorithm has shown a capability of clustering the data set
into 100 clusters in about a hour using a single procesor
of a Sun Enterprise 4000 computer.

Ralambondrainy (1995 presented another approach to
using the k-means algorithm to cluster categorical data.
Ralambondrainy’s approach needs to convert multiple
category attributes into kinary attributes (using O and 1to
represent either a category absent or present) and to treat
the binary attributes as numeric in the k-means algorithm.
If it is used in data mining, this approach requires to
handle a large number of binary attributes because data
sets in data mining often have tegorical attributes with
hundreds or thousands of categories. This will i nevitably
increase bath computational and space @sts of the k-
means algorithm. The other drawback is that the duster
means, given by real values between 0 and 1, do not
indicate the characteristics of the dusters. Comparatively,
the k-modes algorithm direaly works on categorical
attributes and produces the duster modes, which describe
the dusters, thus very useful to the user in interpreting the
clustering results.

Using Gower’s smilarity coefficient (Gower 1971)
and other dissmil arity measures (Gowda and Diday 1991)
one @n use a hierarchical clustering method to cluster
categorical or mixed data. However, the hierarchica
clustering methods are not efficient in processng large
data sets. Their use is limited to small data sets.

The rest of the paper is organised as follows.
Categorical data and its representation are described in
Sedion 2. In Sedion 3 we briefly review the k-means
algorithm and its important properties. In Sedion 4 we
discuss the k-modes algorithm. In Sedion 5 we present
some experimental results on two real data setsto show the
clasgfication performance and computational efficiency of
the k-modes algorithm. We summarise our discussons and
describe our future work plan in Section 6.

2 Categorical Data

Categorical data & referred to in this paper is the data
describing objeds which have only categorical attributes.

The objeds, called categorical objeds, are a simplified
version of the symbdic objeds defined in (Gowda and
Diday 1991). We onsider al numeric (quantitative)
attributes are ategorised and do not consider categorical
attributes that have wmbinational values, e.g., Languages-
spoken (Chinese, English). The following two subsedions
define the ategorical attributes and objeds accepted by the
algorithm.

2.1 Categorical Domains and Attributes

Let A;, A, ..., A, be m attributes describing a space Q
and DOM(A;), DOM(A,), ..., DOM(A ) the domains of
the attributes. A domain DOM (AJ-) is defined as categorical
if it isfinite and unordered, e.g., for any a, b O DOM(AJ-),
eithera=bora#hb. Aj is called a categorical attribute. Q
is a categorical space if alblAA,, ..., A, are categorical.

A categorical domain defined here wntains only
singletons. Combinational values like in (Gowda ad
Diday 1997 are not alowed. A spedal value, denoted by
€, is defined on all categorica domains and used to
represent missng values. To smplify the dissmilarity
measure we do not consider the cnceptual inclusion
relationships among values in a categorical domain like in
(Kodratoff and Teauci 1988 such that car and vehicle are
two categorical valuesin a domain and conceptually a car
is also a vehicle. However, such relationships may exist in
real world databases.

2.2 Categorical Objects
Likein (Gowda and Diday 1991) a categorical ohjed X [
Q is logically represented as a conjunction of attribute-
value pairs[A; = x| O[A, = x,] O...0[A, = X,], where
% 0 DOM(AJ-) for 1 <j < m. An attribute-value pair [Aj =
xj] is called a selector in (Michalski and Stepp 1983.
Without ambiguity we represent X as a vedor [Xy, X,, ...,
Xyl We onsider every oljed in Q has exactly m attribute
values. If the value of attribute Aj is not available for an
objectX, then ﬁ =€
Let X = {X;, X,, ..., X} be aset of n categorical
obeds and X [J Q. Objea X; is represented as [X; 1, X; 5,
o X ml- Wewrite X; = Xy if X, = X for 1< j <m. The
relation X; = X, does not mean that X;, X, are the same

objed in the real world database. It means the two oljeds
have egual categorical valuesin attributes A, A, ..., A,
For example, two patients in a data set may have ejual
values in attributes Sex, Disease and Treatment. However,
they are distinguished in the hospital database by other
attributes such as ID and Addresswhich were not seleded
for clustering.



Asaime X consists of n oljeds in which p obeds are
digtinct. Let N be the cardinality of the Cartesian product
DOM(A,) x DOM(A,) x ... x DOM(A,). We have p < N.

However, n may be larger than N, which means there are
duplicates inX.

3 The K-means Algorithm

The k-means algorithm (MacQueen 1967, Anderberg
1973 is built upon four basic operations. (1) seedion of
the initial k means for k clusters, (2) calculation of the
dissmil arity between an objed and the mean of a cluster,
(3) dlocation of an ohjed to the duster whose mean is
nearest to the ohjed, (4) Re-calculation of the mean of a
cluster from the objeds allocated to it so that the intra
cluster dissmilarity is minimised. Except for the first
operation, the other three operations are repeatedly

performed in the algorithm until the algorithm converges.

The essence of the algorithm is to minimise the st
function

E=3 3 y,d(X.Q) 1)
|=1i=1

where nisthe number of ojedsin adataset X, X; 0 X, Q
isthe mean of cluster |, and y; | is an element of a partition
matrix Yv,,, & in (Hand 198). d is a disdmilarity
measure usually defined by the sguared Euclidean
distance.

There ist a few variants of the k-means algorithm
which differ in sdledion of the initial k means,
dissmil arity calculations and strategies to calculate duster
means (Anderberg 1973 Bobrowski and Bezdek 1991).
The sophisticated variants of the k-means algorithm
include the well-known ISODATA agorithm (Bal and
Hall 1967 and the fuzzy k-means algorithms (Ruspini
1969, 1973).

Most k-means type algorithms have been proved
convergent (MacQueen 1967 Bezdek 198Q Sdim and
Ismail 1984). The k-means algorithm has the following
important properties.

1. It is efficient in processng large data sets. The
computational complexity of the algorithm is
O(tkmn), where m is the number of attributes, n is
the number of ohjeds, k is the number of clusters,
and t isthe number of iterations over the whole data
set. Usually, k, m, t << n. In clustering large data
sets the k-means algorithm is much faster than the
hierarchical clustering algorithms whose general

computational complexity i€©(n?) (Murtagh 1992).

2. It often terminates at a local optimum (MacQueen
1967, Sdim and Ismail 1984. To find out the
global optimum, techniques such as deterministic
annealing (Kirkpatrick et al. 1983 Rose @ al. 1990
and genetic algorithms (Goldberg 1989 Murthy

and Chowdhury 1996 can be incorporated with the
k-means algorithm.

3. It works only on numeric values becuse it
minimises a cost function by calculating the means
of clusters.

4. The dusters have @mnvex shapes (Anderberg 1973.
Therefore, it is difficult to use the k-means
algorithm to discover clusters with non-convex
shapes.

One difficulty in using the k-means algorithm is to spedfy
the number of clusters. Some variants like ISODATA
include a procedure to search for the best k at the st of
some performance.

The k-means algorithm is best suited for data mining
because of its efficiency in processng large data sets.
However, working only on numeric values limitsits usein
data mining because data sets in data mining often have
categorical values. Development of the k-modes algorithm
to be discussd in the next sedion was motivated by the
desire to remove this limitation and extend its use to
categorical domains.

4 The K-modes Algorithm

The k-modes algorithm is a smplified version of the k-
prototypes algorithm described in (Huang 1997%. In this
algorithm we have made three major modifications to the
k-means algorithm, i.e, using dfferent dissmilarity
measures, replacing k means with k modes, and using a
frequency based method to update modes. These
modifications are discussed below.

4.1 Dissimilarity Measures

Let X, Y be two categorical ohjeds described by m
categorical attributes. The disgmil arity measure between X
and Y can be defined by the total mismatches of the
corresponding attribute ategories of the two oljeds. The
smaller the number of mismatches is, the more similar the
two objects. Formally,

d(X) = 3305.3)) @
where
LY (X;=Y;)
5(x;.yj)=E 3)
s %L (X; #Y;)

d(X,Y) gives equal importance to each category of an
attribute. If we take into acoount the frequencies of
categories in a data set, we @n define the dissmil arity
measure as
d (XY E(nXJJrnyJ)a 4
2 L = - X L i
PO = 1 Ty @
where Ny, Ny are the numbers of objeds in the data set

that have ctegories x; and y; for attribute j. Because



dXZ(X,Y) is smilar to the di-sguare distance in

(Greeacre 1984, we all it chi-square distance This
dissmilarity measure gives more importance to rare
categories than frequent ones. Eq. (4) is useful in
discovering under-represented objed clusters such as
fraudulent claims in insurance databases.

4.2 Mode of a Set

Let X be a set of categorical objeds described by
categorical attributes AA,, ..., A,

Definition: A mode of X isavedor Q =[qy, dy, ..., G|
0 Q that minimises
n
D(Q.X) = 3 d(X; Q) (5)
| =

where X ={X;, X,, ..., X,} and dcan be dther defined as
in Eq. (2) or in Eq. (4). Here, Q is nat necessarily an
element oK.

4.3 Find a Mode for a Set
Let Ne, be the number of objeds having category Cyj in

n
attribute A; and  f, (A =¢ ;|X) = Cr_:” the reative
frequency of categorx(gj:in X.

Theorem: The function D(Q,X) is minimised

iff £, (A} =q;|X) =1, (A =c;|X) for 0 # Cyj for all
=1.m.

The proof of the theorem is given in the Appendix.

The theorem defines a way to find Q from a given X,
and therefore is important because it allows to use the k-
means paradigm to cluster categorical data without losing
its efficiency. The theorem implies that the mode of a data
set X is not unique. For example, the mode of set {[a, b],
[a, d. [c, W, [b, d} can be eitherd, I or [a, d.

4.4 The k-modes Algorithm
Let{S,, S, ..., S} beapartition of X, where § # O for 1

<l <k and {Q,Q,,....Q} the modes of {S,, S,, ..., S§}.
The total cost of the partition is defined by

EZ%EYUd(XiaQO (6)
|=1i=1

where y; | is an element of a partition matrix vy, ,, asin
(Hand 1982 and d can be dther defined asin Eq. (2) or in
Eq. (4).

Similar to the k-means algorithm, the objedive of
clustering X is to find a set {Q;, Q,, ..., Q} that can
minimise E. Although the form of this cost function is the
sameas Eq. (1), d isdifferent. Eq. (6) can be minimised by
thek-modes algorithm below.

The k-modes algorithm consists of the following steps
(refer to (Huang 1997 for the detailed description of the
algorithm):

1. Selectkk initial modes, one for each cluster.

2. Allocate an objed to the duster whose mode is the
nearest to it according to d. Update the mode of the
cluster after each allocation according to the
Theorem.

3. After al objeds have been alocated to clusters,
retest the dissmil arity of objeds against the airrent
modes. If an objed is found such that its nearest
mode belongs to another cluster rather than its
current one, reall ocate the ohjed to that cluster and
update the modes of both clusters.

4. Repeat 3 until no okjed has changed clusters after a
full cycle test of the whole data set.

Like the k-means algorithm the k-modes algorithm also
produces locally optimal solutions that are dependent on
theinitial modes and the order of ohjedsin the data set. In
Sedion 5 we use a real example to show how appropriate
initial mode seledion methods can improve the dustering
results.

In our current implementation of the k-modes
algorithm we include two initial mode sdledion methods.
Thefirst method seledsthefirst k distinct records from the
data set as the initial k modes. The second method is
implemented in the following steps.

1. Calculate the frequencies of al categories for all
attributes and store them in a category array in the
descending order of frequency as iown in Figure
1. Here, Cij denotes category i of attribute j and

f(ci‘j) > f(Ci+1,j) where f(Ci,j) is the frequency of

categoryc, i
1 G2 Gz CgqU
O O
E:z,l G2 Gz Cna E
[Cs1 Gz CGal
O O
La1 Ci3 O
O O
B G3 B

Figurel. The category array of a data set with 4 attributes having 4,
2, 5, 3 categories respectively

2. Asdgn the most frequent categories equally to the
initial k modes. For example in Figure 1, asaime k

=3. We aSSQn Ql = [ql,l:Cl,l’ q1’2:C2’2, q1’3:C3’3,
Up4=Crals Q2 = [0217C210 Gpp=Cipr Gp3=Caa
Up4=Co4l @d Q3 = [031=C31: U32=Cp 20 U33=C1 3

U3,47C3,4l
3. Start with Q,. Seled the record most similar to Q

and substitute Q, with the record as the first initial



mode. Then sdled the record most similar to Q,
and substitute Q, with the recrd as the seand
initial mode. Continue this process until Q, is
substituted. In these selectia@s# Q, for | # t.

Step 3is taken to avoid the occurrence of empty clusters.
The purpose of this sledion method is to make the initial
modes diverse, which can result in better clustering results
(see Section 5.1.3).

5 Experimental Results

We used the wel known soybean disease data to test
clasdfication performance of the algorithm and another
large data set seleded from a health insurance database to
test computational efficiency of the algorithm. The second
data set consists of half a million records, each being
described by 34 categorical attributes.

5.1 Tests on Soybean Disease Data

5.1.1 Test Data Sets

The soybean disease data is one of the standard test data
sets used in the machine learning community. It has often
been used to test conceptual clustering agorithms
(Michalski and Stepp 1983 Fisher 1987). We dose this
data set to test our algorithm because of its publicity and
because all its attributes can be treated as categorical
without categorisation.

The soybean data set has 47 observations, each being
described by 35 attributes. Each observation is identified
by one of the 4 dseases -- Diaporthe Stem Canker,
Charcoal Rot, Rhizoctonia Roat Rot, and Phytophthora
Rot. Except for Phytophthora Rot which has 17
observations, all other diseases have 10 observations each.
Eq. (2) was used in the tests because all disease dasses are
amost equally distributed. Of the 35 attributes we only

selected 21 because the other 14 have only one category.

To study the dfed of record order, we aeated 100test
data sets by randomly reordering the 47 observations. By
doing this we were also seleding dfferent records for the
initial modes using the first sdedion method. All disease
identifications were removed from the test data sets.

5.1.2 Clustering Results

We used the k-modes algorithm to cluster each test data set
into 4 clusters with the two initial mode seledion methods
and produced 200 clustering results. For each clustering
result we used a misclasdfication matrix to analyse the
correspondence between clusters and the disease dasses of
the observations. Two misclassfication matrices for the
test data sets 1 and 9 are shown in Figure 2. The @pital
letters D, C, R, P in the first column of the matrices
represent the 4 disease dasss. In figure 2(a) there is one

to one rrespondence between clusters and dsease
classes, which means the observations in the same disease
clases were dustered into the same dusters. This
represents a complete remvery of the 4 dsease dasss
from the test data set.

In Figure 2(b) two observations of the disease dassP
were misclassfied into cluster 1 which was dominated by
the observations of the disease dass R. However, the
observationsin the other two disease dasses were @rredly
clustered into clusters 3 and 4. This clustering result can
also be considered good.

Cluster 1 Cluster 2| Cluster 3 Cluster 4
10

10

10

o|oO|O

17
@

Cluster 1 Cluster 2| Cluster 3 Cluster 4
10

10

o|oO|O

2 15
(b)

Figure 2. Two misclassfication matrices. (a) Corresponcence between
clusers of test data set 1 and dsease dasss. (b)
Correspondence between clusters of test data set 9 and
disease classes.

If we use the number of misclassfied observations as a
measure of a clustering result, we @an summarise the 200
clustering results in Table 1. The first column in the table
gives the number of misclassfied observations. The second

and third columns show the numbers of clustering results.

Table 1.

Misclassified | First Selection Method | Second Selection Method
Observations

0 13 14

1 7 8

2 12 26

3 9

4 7 6

5 2 1

>5 55 36

If we oonsder the number of misclasdfied
observations lessthan 6 asa“good” clustering result, then
45 ooad results were produced with the first seledion
method and 64 @od results with the second seledion
method. Both sdedion methods produced more than 10
complete reovery results (0 misclassfication). These
results indicate that if we randomly choase one test data
set, we have a 45% chance to oltain a good clustering
result with the first seledion method and a 64% chance
with the second selection method.



Table 2 shows the relationships between the dustering
results and the dustering costs (values of Eq. (6)). The
numbers in brackets are the numbers of clustering results
having the crresponding clustering cost values. All total
mismatches of “bad” clustering results are greater than
those of “good” clustering results. The minimal tota
mismatch number in these tests is 194 which is likely the
global minimum. These relationships indicate that we @n
use the dustering cost values from several runs to choose a
goad clustering result if the original clasdfication of data
is unknown.

We did the same tests using a k-means algorithm
which is based on the versions 3 and 5 of subroutine
KMEAN in (Anderberg 1973. In these tests we smply
treated al attributes as numeric and used the squared
Euclidean distance as the dissmil arity measure. The initial
means were seleded by the first method. Of 100 clustering
results we only got 4 good ones of which 2 had a complete
recovery. Comparing the st values of the 4 good
clustering results with other clustering results, we found
that the dustering results and the @st values are not
related. Therefore, a good clustering result cannot be
selected according to its cost value.

Table 2.
Misclassified | Total mismatchesfor Total mismatches for
Observations method 1 method 2
0 194(13) 194(14)
1 194(7) 194(7), 197(1)
2 194(12) 194(25),195(1)
3 195(2),197(1), 201(1)|] 195(6),196(2),197(1)
4 195(2),196(3),197(2) | 195(4),196(1),197(1)
5 197(2) 197(2)
>5 203-261 209-254
Table 3.
No. of classes No. of runs Mean cost Std Dev
1 1 247 -
2 28 222.3 24.94
3 66 211.9 19.28
4 5 194.6 1.34

The dfed of initial modes on clustering results is
shown in Table 3. The first column is the number of
disease dassstheinitial modes have and the semnd is the
corresponding number of runs with the number of disease
classs in the initial modes. This table indicates that the
more diverse the disease dasss are in the initial modes,
the better the dustering results. The initial modes sleded
by the seacond method have 3 disease types, therefore more
good cluster results were produced than by the first
method.

From the modes and category distributions of different
attributes in different clusters the algorithm can aso

producediscriminative dharacteristics of clusters smilar to
those in Michalski andStepp 1983).

5.2 Tests on a Large Data Set

The purpose of this experiment was to test the scalability
of the k-modes algorithm in clustering very large red
world data sets. We seleded a large data set from a health
insurance database. The data set consists of 500000
records, each being described by 34 categorical attributes
in which 4 have more than 1000 categories each.

We tested two scalabiliti es of the algorithm using this
large data set. The first one is the scalahility of the
algorithm against the number of clusters for a given
number of objeds and the seaond is the scal ability against
the number of objeds for a given number of clusters.
Figures 3 and 4 show the results produced using a single
procesor of a Sun Enterprise 4000 computer. The plotsin
the figures represent the average time performance of 5
independent runs.

3800

3600 -
3400
3200 -
3000
2800 -
2600 -

2400 -

Real run time in seconds

2200 -
2000

1800 -

1600

10 20 30 80 90 100

0 50 60 70
Number of clusters

Figure 3. Scalability to the number of clustersin clustering 500000
records.

4000

3500

3000

2500

2000

1500 -

Real run time in seconds

1000

500

0
0 50 100 150 200 250 300 350 400 450 500
Number of records in 1000

Figure 4. Scalability to the number of records clustered into 100
clusters.

These results are very encouraging because they show
clearly a linear increase in time as both the number of
clusters and number of records increase. Clustering half a
million objects into 100 clusters took about a hour, which
is quite acceptable. Compared with the results of clustering
data with mixed values (Huang 1997), this agorithm is
much faster than its previous version because it needs
many less iterations to converge.



The above soybean disease data tests indicate that a
goad clustering result should be sdeded from multiple
runs of the algorithm over the same data set with different
record orders and/or different initial modes. This can be
done in practice by running the algorithm in parallel on a
parallel computing system. Other parts of the algorithm
such as the operation to allocate an objed to a cluster can
also beparallelised to improve the performance.

6 Summary and Future Work

The biggest advantage of the k-means algorithm in data
mining applications is its efficiency in clustering large
data sets. However, its use is limited to numeric values.
The k-modes algorithm presented in this paper has
removed this limitation whilst preserving its efficiency.

The k-modes algorithm has made the following
extensions to the-means algorithm:

1. replacing means of clusters with modes,

2. using new disdmilarity measures to deal with

categorical objects, and

3. using afrequency based method to update modes of

clusters.
These etensions allow us to use the k-means paradigm
direaly to cluster categorical data without need of data
conversion.

Another advantage of the k-modes algorithm is that
the modes give daracteristic descriptions of clusters.
These descriptions are very important to the user in
interpreting clustering results.

Because data mining deals with very large data sets,
scalability is a basic requirement to the data mining
algorithms. Our experimental results have demonstrated
that the k-modes algorithm is indeed scalable to very large
and complex data sets in terms of bath the number of
records and the number of clusters. In fact the k-modes
algorithm is faster than the k-means algorithm because our
experiments have shown that the former often needs less
iterations to converge than the later.

Our future work plan is to develop and implement a
parallel k-modes algorithm to cluster data sets with
millions of objeds. Such an agorithm is required in a
number of data mining applications, such as partitioning
very large heterogeneous sts of objeds into a number of
smaller and more manageable homogeneous aubsets that
can be more esily modelled and analysed, and deteding
under-represented concepts, e.g., fraud in a very large
number of insurance claims.
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Appendix

The theorem in Section 4.3 can be proved as follows (Aj
stands for DOM (Aj) here):

nC
K,
Let f, (A :ckj|X):
of category ¢ ; of attrlbuteA where n is the total number
of objects in X and N, | the number of objects having

category ¢.. For the

J dissimilarity = measure

d(X! y) = Ela(xj ,yJ) , wewrite
J:
340,Q)
=2 300¢,;.9))

f(;a(x.,,q,»

>

3
~
[ERN
|
\|/

||M3 ||M3

n(l fo (A =d;|X)

=q;[X))=z 0 for 1 < j < m,

Because n(1- f, (A
%d(xi Q) is minimised iff every n(1- f, (A; =q;[X)) is
i=1

minimal. Thus, f, (A; =q;|X) must be maximal.

For the dissimilarity measure
m (N, x, tn )
d.(xy) El o, 3(x;,y;), wewrite
zd Z(Xi!Q)
n m (n)gJ +nqj)
= — .
ilezl nK,anJ (X"J qj)
mn 1
=22(— _)6(le’q )
j=1i=1 nqj
mn 1 mn 1
= ,Z],Z E5(X. a2 Zlaﬂxi,, d;)
Now we have
n o1
izlwa(xi,j ,a;)
Z_ fe (A =cj1X) ——f, (A; = q;]X)
=1 CKJ i
=ng -1

where ne, is the number of categories in A; and N, | the

number of objects having category Cyj- Consequently, we
get

32 (X, Q= 31 T, (A =6, X))+ 3 (g -
i=1 j=1Nq, =

n
Because n—(l— fr (A

m
=q;|X))=0and _Z(nCJ -lisa
q; =1

n
congtant for a given X, > dXz(Xi ,Q) is minimised iff
=1

every —(1 fr (A=
Mo,

fe (A; =g;|X) must be maximal .

=q;|X))is  minima.  Thus,



